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Rank-based Distance Metric Learning: An Application to Image Retrieval
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Abstract

We present a novel approach to learn distance metric
for information retrieval. Learning distance metric from
a number of queries with side information, i.e., relevance
judgements, has been studied widely, for example pairwise
constraint-based distance metric learning. However, the ca-
pacity of existing algorithms is limited, because they usu-
ally assume that the distance between two similar objects
is smaller than the distance between two dissimilar ob-
jects. This assumption may not hold, especially in the case
of information retrieval when the input space is heteroge-
neous. To address this problem explicitly, we propose rank-
based distance metric learning. Our approach overcomes
the drawback of existing algorithms by comparing the dis-
tances only among the relevant and irrelevant objects for a
given query. To avoid over-fitting, a regularizer based on
the Burg matrix divergence is also introduced. We apply
the proposed framework to tattoo image retrieval in foren-
sics and law enforcement application domain. The goal of
the application is to retrieve tattoo images from a gallery
database that are visually similar to a tattoo found on a
suspect or a victim. The experimental results show encour-
aging results in comparison to the standard approaches for
distance metric learning.

1. Introduction

Due to rapid growth in the number of available digital
images, content-based image retrieval (CBIR) has been ex-
tensively studied over the past decade. Most CBIR systems
use low-level image features, such as color, texture, and
shape, to represent the visual content. These features are au-
tomatically extracted from images to compute the similar-
ity between a query and images in the database [7, 17, 25].
However, the retrieval performances of most CBIR systems
do not currently meet user expectations. The major rea-

1This research was supported by ARO grant W911NF-07-1-0665 and
NSF IUC on Identification Technology Research (CITeR).

son for this limited performance is that the low-level fea-
tures are not able to capture the perceived image similar-
ity observed by humans. Consequently, one of the major
challenges in CBIR is how to compensate for the semantic
gap using the low-level features. Several different similarity
functions using low-level features have been proposed and
examined [12, 19, 28]. Nevertheless, as Santini et al. argued
in [20], the only perceptual similarity that can meaningfully
be used is pre-attentive similarity, not semantic similarity.

While most CBIR applications emphasize identifying se-
mantically similar images, such as “vacation images”, there
is increasing interest in retrieving visually similar images,
such as “different images of the White House”. The con-
cept of visual similarity is crucial in many real applications
like “tattoo image retrieval” for suspect or victim identifi-
cation [15] that plays an important role in forensic and law
enforcement. Because these applications aim to retrieve dif-
ferent images of the same object (e.g., tattoo), semantic per-
ception does not play a major role in retrieval. This funda-
mental difference makes it more feasible to retrieve visually
similar images based only on the low-level visual features.

The key to measure accurate visual similarity between
images is to find appropriate distance metric for the given
CBIR task. While most existing studies use a pre-defined
distance metric for image similarity measurement, our goal
is to learn a distance metric from a number of training sam-
ples with side information i.e., relevance judgments. This
approach can be cast into a standard distance metric learn-
ing problem, in which a distance metric is found to keep
the queries close to the relevant objects and far away from
the irrelevant ones. Unfortunately, as revealed by our em-
pirical study, this strategy does not work well for informa-
tion retrieval. This is because most distance metric learn-
ing algorithms assume that two similar objects are separated
by a smaller distance than two dissimilar objects. This as-
sumption may not hold for information retrieval, especially
when some queries are far away from all the objects in the
database while others are close to many of the objects in the
database. In these cases, the distance from a relevant object
to a “far away” query may be larger than a distance between
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an irrelevant object and a “close by” query. We aim to ad-
dress this problem by a rank-based distance metric learning.
It overcomes the shortcoming of the existing algorithms by
comparing the distance among the relevant and irrelevant
objects of only a given query. A specially designed regular-
izer based on the Burg matrix divergence [13] is introduced
to alleviate the over-fitting problem.

The rest of the paper is organized as follows. Section
2 describes related work and Section 3 presents the rank-
based approach for distance metric learning within the con-
text of image retrieval. Tattoo image retrieval for suspect
or victim identification is described in Section 4 as the ap-
plication domain and experimental results are provided in
Section 5. Finally, we conclude our work in Section 6.

2. Related Work
Learning distance metric from available side information

has attracted much interest in recent studies. The side infor-
mation is usually cast in the form of pairwise constraints.
The must-link (or equivalence) constraints are the pairs of
“similar” objects, and cannot-link (or inequivalence) con-
straints are the pairs of “dissimilar” objects. The opti-
mal distance metric is found such that the objects in must-
link constraints are close to each other while the objects
in the cannot-link constraints are well separated. A num-
ber of algorithms have been developed for learning dis-
tance metric from pairwise constraints, including the con-
vex programming approach [27, 16], local distance metric
learning [11, 30], relevance component analysis [4], dis-
criminative component analysis (DCA) [14], support vector
machine based approaches [21], neighborhood component
analysis [9] and its extension [8], maximum-margin nearest
neighbor (LMNN) classifier [26], a boosting approach [31]
and Bayesian distance metric learning [29].

Most of the algorithms for distance metric learning as-
sume that the objects in a must-link constraint are separated
by a smaller distance compared to the objects in a cannot-
link constraint. However, this assumption may not hold
if the input space is heterogeneous and the distances be-
tween objects vary significantly from one location of the
input space to another. As a consequence, it is inappropri-
ate to directly compare the distance of any must-link con-
straint to the distance of any cannot-link constraint. Our
proposed a rank-based approach for distance metric learn-
ing overcomes this shortcoming by comparing the distance
of a must-link constraint to that of a cannot-link constraint
only when they are from the “same location” in the input
space or associated with the same query.

It is worth mentioning that in addition to the paradigm of
learning distance metric from pairwise constraints, there are
other approaches for distance metric learning. For instance,
in [21] the authors proposed to learn a distance metric from
relative comparison. Although the approach in [21] is sim-

ilar to the spirit of this work, it differs significantly in both
the overall formulation and the regularizers used to avoid
over-fitting. In [31, 10] the authors present a framework of
distance metric learning based on maximum likelihood es-
timation.

3. Distance Metric Learning
The standard distance metric learning involves pairs of

objects that are randomly sampled from a database. On the
other hand, in CBIR the pairwise constraints are generated
by issuing queries against a given database of images, and
visually identifying images from the top retrieved ones that
are similar to the query images.

Let D = {xi, i = 1, . . . , ND} denote the collection of
images to be retrieved where xi ∈ Rd is a feature vector
of size d and represents the ith image. Let Q = {qi, i =
1, . . . , NQ} denote the set of queries that are used to gen-
erate the pairwise constraints for distance metric learning.
Similar to the images in D, each query image qi is repre-
sented by a vector of d attributes. For each query qi, we de-
note by {xi1 , . . . , xiK} the top K images that are retrieved
from D by the given distance metric A0. We denote by
yij ∈ {−1, +1} the relevance judgment for the j-th re-
trieved image xij : yij = +1 when the retrieved image xij

is visually similar to the query image qi, and −1 otherwise.
Using the language of pairwise constraints, image xij and
query qi form a must-link constraint when yij = 1 and a
cannot-link constraint when yij = −1. Our goal is to learn
a distance metric A ∈ Rd×d from the generated pairwise
constraints that improves over the existing metric A0.

3.1. Constraint-based Distance Metric Learning

Before presenting the rank-based approach for distance
metric learning, we first present a “typical” distance metric
learning approach for image retrieval. The approach ex-
ploits the assumption that the distance between images in
a must-link constraint tends to be smaller than that for a
cannot-link constraint. We refer to this typical approach
as “constraint-based” for distance metric learning to distin-
guish it from the proposed “rank-based” approach.

Following the framework in [27], the optimal distance
metric is learned by minimizing the overall distance of
the must-link constraints provided that the images in the
cannot-link constraints are well separated. This principle
can be cast into the following optimization problem:

min
A∈Rd×d

NQ∑

i=1

K∑

j=1

δ(yij , +1)d(qi, xij ;A) +
λ

2
tr(AAT )

s. t. d(qi, xij ; A) ≥ 1, ∀yij = −1
A º 0, (1)

where δ(y, a) is a Dirac delta function that outputs 1 when



y = a and zero otherwise. d(x, x′; A) measures the dis-
tance between images x and x′ based on the metric A, and
is defined as

d(x, x′; A) ≡ (x− x′)T A(x− x′). (2)

There are two sets of constraints used in the above optimiza-
tion problem. The first set of constraints, d(qi, xij ; A) ≥
1,∀yij = −1, ensures the pairs of images in the cannot-
link constraints are well separated. The second constraint,
A º 0, ensures that matrix A is indeed a metric. The ob-
jective function in (1) consists of two terms. The first term,
i.e.,

∑NQ

i=1

∑K
j=1 δ(yij , +1)d(qi, xij ; A), measures the sum

of the distance over all the must-link constraints. By min-
imizing this term, we enforce the images in the must-link
constraints to be close to each other. The second term in
the objective function, i.e., λtr(AAT )/2, is introduced to
regularize the optimal solution for metric A to be a sparse
matrix. This is similar to the quadratic regularizer used in
support vector machine (SVM) [5]. Finally, the above prob-
lem is a Semi-Definite Programming (SDP) problem and
can in general be solved by an interior point method [24].

The main shortcoming of the constraint-based approach
is that the distance between objects in must-link constraints
may vary significantly from one query to another. As a re-
sult, the sum of the distance for all the must-link constraints
may be dominated by a small number of queries that are in-
deed very far from the images in the database D, and most
of the optimization effort is spent on reducing the distance
for these far away queries. According to the representer the-
orem, the optimal solution A∗ to the optimization problem
in (1) can be written as:

A∗ =
ND∑

i=1

K∑

j=1

θij δ(yij ,−1)(qi − xij )(qi − xij )
T

+η

ND∑

i=1

K∑

j=1

δ(yij , +1)(qi − xij )(qi − xij )
T ,(3)

where θij
and η are weights assigned to each pairwise con-

straint. As indicated by the above theorem, every must-link
constraint (i.e., yij = +1) is assigned the same weight η.
As a consequence, the optimal metric A∗ may be dominated
by the far away queries.

One may consider improving the above approach by
viewing the problem of distance metric learning as a bi-
nary classification problem, and cast it into the following
optimization problem:

min
A∈Rd×d

NQ∑

i=1

K∑

j=1

δ(yij
, +1)εij

+
λ

2
tr(AAT )

s. t. d(qi, xij ;A) ≥ 1, ∀yij = −1
d(qi, xij

;A) < 1 + εij
, εij

≥ 0, ∀yij
= +1

A º 0, (4)

where slack variables εij ≥ 0 are introduced to account for
the errors in classifying images to be similar. Similar to
the previous analysis, we have a representer theorem for the
optimal solution A∗, i.e.,

A∗ =
ND∑

i=1

K∑

j=1

θij (qi − xij )(qi − xij )
T . (5)

Note that the weights assigned to must-link constraints by
the above optimization problem are no longer a single pa-
rameter as in (3). However, the following theorem illus-
trates that the formulation in (4) indeed puts more emphasis
on the distances associated with the far away queries.

Theorem 1 The problem in (4) is equivalent to the follow-
ing optimization problem:

min
A∈Rd×d

NQ∑

i=1

K∑

j=1

δ(yij ,+1)l(d(qi, xij ; A)) +
λ

2
tr(AAT )

s. t. d(qi, xij ; A) ≥ 1, ∀yij = −1
A º 0, (6)

where l(d) = max(0, d− 1).

The above result follows the fact ξij =
max(0, d(qi, xij ;A) − 1). As indicated by the above
theorem, the loss function l(d) removes any must-link
constraint whose distance d is less than 1, and as a result,
the impact of far away queries is further amplified by l(d).

3.2. Rank-based Distance Metric Learning

To address the problem when the input space is hetero-
geneous and the distance in must-link constraints may vary
significantly from one query to another, we propose to learn
the distance metric learning by a rank-based approach. In
particular, instead of requiring the distance of any must-link
constraint to be smaller than that of a cannot-link constraint,
we only compare the distances of pairwise constraints that
are generated by the same query. Hence, a must-link con-
straint is supposed to have a smaller distance than a cannot-
link constraint only when they are from the same query. We
cast this idea into the following optimization problem:

min
A∈Rd×d

NQ∑

i=1

K∑

k,j=1

δ(yij
,−1)δ(yik

, +1)εi
j,k +

λ

2
tr(AAT )

s. t. d(qi, xij ; A)− d(qi, xik
;A) ≥ 1− εi

j,k, εi
j,k ≥ 0

A º 0 (7)

Note that a slack variable εi
j,k ≥ 0 is introduced when com-

paring a must-link constraint (i.e., yik
= +1) and a cannot-

link constraint (i.e., yik
= −1) that share the same query.

Since only the constraints sharing the same query will be



compared in computing the distance metric, we only re-
quire the distance of a must-link constraint to be relatively
small compared to the distance of a cannot-link constraint
and therefore avoid the shortcoming of the constraint-based
approach for distance metric learning.

Although the formulation in (7) addresses the shortcom-
ings of the constraint-based approach, it does not take into
account the existing distance metric A0 when learning a
new distance metric from pairwise constraints. This could
be important if A0 is engineered by the domain expert to
take into account the domain knowledge. It will also be
useful to take into account A0 if we learn the distance met-
ric A in a sequential manner and A0 is a distance metric
learned from the pairwise constraints collected in the previ-
ous iterations. In order to explicitly take into account A0,
we replace the regularizer λtr(AAT )/2 with the Burg ma-
trix divergence [13] that is defined as follows:

D(A, A0) = tr(AA−1
0 (AA−1

0 )T )− 2 log det(AA−1
0 )− d. (8)

Since A and A0 may share a different scaling, we normalize
matrix A0 as follows before computing the divergence,

Â0 = A0
tr(A)
tr(A0)

.

Using the above matrix divergence, the problem in (7) is
modified as follows:

min
A∈Rd×d

NQ∑

i=1

K∑

k,j=1

δ(yij ,−1)δ(yik
, +1)εi

j,k +
λ

2
D(A, Â0)

s. t. d(qi, xij ;A)− d(qi, xik
;A) ≥ 1− εk

j,k, εi
j,k ≥ 0

A º 0. (9)

By minimizing the divergence between A and A0, we re-
quire the learned distance matrix A to be similar to A0.

Remark To better understand the matrix divergence
D(A, A0) in (8), we consider the special case when both
A and A0 are diagonal matrices, i.e., A = diag(a1, . . . , ad)
and A0 = diag(b1, . . . , bd). The divergence is now simpli-
fied as follows:

D(A, Â0) =
d∑

i=1

(
ai/b̂i

)2

− 2
d∑

i=1

log(ai/b̂i)− d

≈
d∑

i=1

(ai/b̂i − 1)2,

where b̂i = bi

∑d
i=1 ai/(

∑d
i=1 bi). The above approxima-

tion follows the inequality log x ≈ x − 1. When A0 is an
Identity matrix, the divergence D(A, Â0) is further approx-
imated as

D(A, Â0) ≈ 1
a2

d∑

i=1

(ai − a)2,

where a =
∑d

i=1 ai/d. The above analysis indicates
that when A0 is an Identity matrix, the matrix divergence
D(A, Â0) essentially measures the variance in the diagonal
elements of matrix A. Thus, by minimizing the divergence,
the resulting matrix A tends to have a flat distribution over
its diagonal elements.

3.3. Efficient Implementation

The distance metric learning algorithm described above
requires finding the optimal matrix A. This is usually
computationally expensive because (i) the number of ele-
ments in A is quadratic in the number of dimensions used
to represent images, and (ii) the requirement that A has
to be positive semi-definite. We reduce the computational
cost by assuming A to be a diagonal matrix, i.e., A =
diag(a1, . . . , ad), such that d(x, x′;A) = d(x, x′; a) =∑d

i=1(xi − x′i)
2ai. Then, the problems in (1) and (7) are

simplified as

min
a∈Rd

NQ∑

i=1

K∑

j=1

δ(yij ,+1)d(qi, xij ; a) +
λ

2

d∑

i=1

a2
i

s. t. d(qi, xij ; A) ≥ 1, ∀yij = −1
ai ≥ 0, i = 1, . . . , d (10)

and

min
a∈Rd

NQ∑

i=1

K∑

k,j=1

δ(yij ,−1)δ(yik
, +1)εi

j,k +
λ

2

d∑

i=1

(ai − a)2

s. t. d(qi, xij ; a)− d(qi, xik
; A) ≥ 1− εk

j,k, εi
j,k ≥ 0

ai ≥ 0, i = 1, . . . , d, (11)

respectively. In the above, an Identity matrix is assumed
for A0. Both problems in (10) and (11) can be solved by
standard quadratic programming techniques.

Remark It is interesting to examine the regularizer∑d
i=1(ai − a)2 from the view point of Laplacian. We can

rewrite the regularizer into the matrix form, i.e.,

d∑

i=1

(ai − a)2 = a>(I − 11>/n)a = a>La

where L is indeed a graph Laplacian constructed from a
fully connected graph with every edge weighted equally. If
we have more knowledge regarding the features, we can
adopt a different weight for the pairwise relationship be-
tween any two features, which will lead to a very different
graph Laplacain.



Figure 1. Examples of tattoos belonging to well known gangs:
(a) Brazers, (b) Latin Kings, (c) Family Stones, and (d) Insane
Deuces [1]

Figure 2. Illustration of large intra-class variability in tattoo im-
ages. All the above images belong to the FIRE category

4. Tattoo Images for Victim and Suspect Iden-
tification

Tattoos engraved on human body are routinely used to
assist in human identification in forensics applications. This
is not only because of the increasing prevalence of tattoos,
but also due to their impact on other methods of human
identification such as visual, pathological, or trauma-based
identification [22]. The role of tattoos is particularly impor-
tant when the primary biometric traits, e.g., fingerprints or
face, are either no longer available, or corrupted (e.g. vic-
tims of Asian Tsunami and 9/11 terrorist attack). A study
by Burma [6] found that delinquents are significantly more
likely to have tattoos than non-delinquents which indicates
that tattoos could provide a source of information for de-
termining gang membership. Many law enforcement agen-
cies maintain a database of tattoos, i.e., tattoo field in the
Computerized Criminal History Records, and it is now a
common practice to photograph and catalog tattoo patterns
to identify victims and criminals (e.g., gang membership,
see Figure 1) [23, 1]. While a tattoo does not uniquely
establish the identity of a suspect or a victim, it helps in
narrowing down the possible identities since tattood often
indicate gang membership, religious beliefs, previous con-
viction, military services, etc.

The ANSI/NIST-ITL 1-2000 document [3] contains clas-
sification standards for tattoo images. The standard has
eight major tattoo classes, such as human, animal, symbol,
etc, and 80 subclasses. Current practice in law enforcement
agencies is to match a query tattoo by performing manual
searches in the tattoo database based on matching the class
labels. This process is subjective, has limited performance
and is time-consuming. Further, a simple class descriptor
of a tattoo textual query does not contain all the semantics
in the tattoo images as evident by the large intra-class vari-

ability (see Figure 2).
Jain et al. proposed a CBIR system for tattoo image

matching and retrieval [15]. Although this system showed
promising results, its performance is limited because it em-
ploys a predefined similarity measure without appropriately
weighting different features. We aim to improve its perfor-
mance by applying the proposed rank-based distance metric
learning framework.

4.1. Tattoo Image Database

We use the same tattoo database as in [15], which con-
tains 2,157 tattoo images downloaded from the web [2] and
belonging to eight main classes and 20 subclasses in the
ANSI/NIST standard [3]. Multiple acquisition of the same
tattoo may look different because of various imaging condi-
tion, such as brightness, viewpoint and distance (see Figure
3). A tattoo image retrieval system should be invariant to
these imagining conditions. To simulate the various imag-
ing conditions, we follow the work in [15] and generate 20
transformed images for every tattoo image in the database
(see Figure 4). This results in a total of 43,140 synthesized
images.

4.2. Image Features

We choose the low level image attributes same as in [15],
i.e., color, shape and texture. The overall size of the feature
vector is 272. Similar features have also been used in many
other CBIR systems and summarized below.

Color Two color descriptors, color histogram and color
correlogram, are extracted from the RGB space. A color
correlogram stores the probability of finding a pixel of color
j at a distance k from a pixel of color i in the image. The
color histogram and correlogram are calculated by dividing
each color component into 20 and 63 bins, resulting in a
total of 60 and 189 bins for the color histogram and correl-
ogram, respectively. For computational efficiency, we com-
pute color autocorrelogram only between identical colors in
a local neighborhood, i.e., i = j and k = 1, 3, 5.

Shape Based on 2nd and 3rd order moments, a set of
seven features that are invariant to translation, rotation, and
scale are obtained. Two different feature sets are extracted,
one from the segmented grayscale and the other from gra-
dient tattoo images.

Texture Edge Direction Coherence Vector stores the ra-
tio of coherent to non-coherent edge pixels with the same
quantized direction (within an interval of 10 degree). A
threshold (0.1% of image size) on the edge-connected com-
ponents in a given direction is used to decide the region co-
herency. This feature discriminates structured edges from
randomly distributed edges.

The histogram intersection based approach used in [15]
to measure image similarity, is used here as the baseline



Figure 3. Eight different images of a butterfly tattoo taken under different imaging conditions

Figure 4. Examples of tattoo image transformation: (a) original, variations due to (b) blurring, (c) and (d) aspect ratio change, (e) illumina-
tion, (f) additive noise (g) color transformation, and (h) rotation

performance. This similarity measure calculates the over-
lapping area between two normalized histograms.

5. Experimental Results
We evaluate the proposed algorithm for distance metric

learning on tattoo image retrieval problem. We assume that
the query tattoo images are taken under imperfect imag-
ing conditions and therefore can be simulated by the trans-
formed images that were described in Section 4. A retrieved
image is deemed to be relevant, when the query image was
generated from the retrieved image, by one of the image
transformations shown in Figure 4. The number of queries
is 43,140 and the size of the database is 2,157. The distance
metric is learned off-line from a pool of training examples
and, as a result, the matching procedure using the learned
distance metric takes the same time as the baseline.

Since there is only one true “similar” image in the
database for every query image, we adopt the cumulative
matching characteristic (CMC) [18] curve as the evaluation
metric. This metric cumulates the correct number of re-
trieved images as the rank is increased. For cross validation,
we divided the database of query images (43,140 images)
into ten folds of equal size. One fold of query images is se-
lected for testing, and 5,000 images are randomly selected
from the remaining nine folds for training. This procedure
is repeated for every fold of query images and the CMC
curve, averaged over 10 experiments, is reported with the
mean of standard deviations, σ, of all ranks.

Before presenting our results on rank-based distance
learning, we will first examine the hypothesis that is used
by many other distance metric learning algorithms, namely
a distance between two similar object in a must-link pair
is usually smaller than the distance between two dissimilar
objects in a cannot-link pair. Figure 5 shows the distance

distributions based on histogram intersection for both must-
link pairs and cannot-link pairs. We notice that the distance
distribution for the must-link pairs indeed has a long tail,
which makes it difficult to differentiate them from cannot-
link pairs. This suggests that the hypothesis assumed by
many distance metric learning algorithms may not hold in
our image retrieval problem. In this experimental study, we
aim to address three important questions:
• Will the rank-based framework be more effective than

the constraint-based framework for distance metric
learning in the case of image retrieval?

• How important is the regularizer in learning a distance
metric for image retrieval?

• How to efficiently train a distance metric by the rank-
based framework?

Comparison of Distance Metric Learning Algorithms
We now compare the rank-based approach for distance met-
ric learning to the constraint-based approach. Figure 6
shows the retrieval performance of the two distance metric
learning approaches. First, we observe that the rank-based
approach significantly outperforms the constraint-based ap-
proach at every rank. For instance, the rank-1 retrieval
accuracy of the ranked-based approach is over 71% while
the accuracy of the constraint-based approach is less than
65%. Besides, the constraint-based approach shows very
little improvement over the baseline. In fact, it performs
noticeably worse than the baseline for the first 5 ranks. This
result implies that directly comparing the distance of any
must-link constraint to that of any cannot-link constraint
may be inappropriate if the input space is heterogeneous.
Overall, we observe a significant improvement made by the
ranked-based approach for distance metric learning in com-
parison to the baseline approach, suggesting that the pro-
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Figure 5. Distance distributions for must-link and cannot-link pairs

2 4 6 8 10 12 14 16 18 20
0.6

0.65

0.7

0.75

0.8

0.85

Rank

C
um

ul
at

iv
e 

ac
cu

ra
cy

 

 

Rank-based, σ=0.0076

Constraint-based, σ=0.0081

Baseline, σ=0.0064

Figure 6. Retrieval accuracy of the rank-based approach and the
constraint-based approach for distance metric learning

posed ranked-based approach is effective in handling het-
erogeneous input space.

Effects of Regularizer This experiment examines the ef-
fect of the regularizer in (10) by varying the value of the
regularization parameter λ. Figure 7 summarizes the re-
trieval performance of the rank-based approach with differ-
ent value of λ. Without a regularizer, i.e., λ = 0 in (10), the
retrieval performance of the rank-based approach is similar
to baseline. By increasing the value of regularization pa-
rameter from 1 to 100, we observe the overall increase in
the retrieval performance. These results indicate the impor-
tance of regularizer for distance metric learning. Also, the
overall monotonic trend with increasing value of λ makes
it relatively easy to choose the appropriate value for λ. In
fact, the retrieval performance remains almost unchanged
when the regularization parameter passes a certain thresh-
old. We found that the threshold value for the regularization
parameter depends the size of training set. In particular, we
observed a larger value for the threshold of the parameter
when the size of training example is increased.
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Figure 7. Retrieval accuracy of rank-based approach using differ-
ent regularization parameter values
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Figure 8. Retrieval accuracy of rank-based approach for distance
metric learning using different training pairs

Efficient Training for Distance Metric Learning There
are a total of 93 million image pairs in our experiments. It is
thus computationally infeasible to use all the pairs for train-
ing. Instead, we focus on training the distance metric by
selecting “critical” image pairs. The critical image pairs for
each query image are formed by the top list of irrelevant im-
ages that are retrieved by the baseline approach. In addition,
to preserve the diversity of the training pairs, we also ran-
domly select a few images for each query to form additional
cannot-links. Figure 8 shows the results of the rank-based
approach that is trained by two different sets of pairs: (i) the
critical pairs formed by the top ranked 20 irrelevant images,
and (ii) the critical pairs formed by the top ranked 10 irrel-
evant images and 10 randomly selected images. The results
show that although the same number of cannot-link sets are
used in both the experiments, the distance metric trained
from the combination of top ranked images and randomly
chosen images performs much better. We attribute the dif-
ference to the fact that the top ranked irrelevant images may
not be able to represent the feature distribution of images



in the entire database. The randomly chosen images from
outside of top ranked images provide general information
about the input space while the top rank images supply de-
tailed information only among a given query and irrelevant
images.

6. Conclusions
In this paper, we examined the problem of distance met-

ric learning under the context of image retrieval. We pre-
sented a rank-based framework for distance metric learn-
ing that explicitly addresses the problem of heterogeneous
input space. Our approach distinguishes from the previ-
ous approach, e.g., pairwise constraint-based distance met-
ric learning, in that it does not assumes shorter distances
among relevant objects compared to the distance between
objects. The experimental results show that our approach is
more effective than the existing algorithms.
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